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Cross-validation is a common statistical procedure applied to problems that are otherwise computationally intractable. It is often
employed to assess the effectiveness of prediction procedures. In this report, cross-validation is discussed in terms of U-statistics. This
approach permits consideration of the statistical properties of cross-validation as an approach to assessment of prediction accuracy.
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Cross-validation methods have a long history in statistics (Geisser, 1975; Golub, Heath, & Wahba, 1979; Picard & Cook,
1984; Stone, 1974). This report relates cross-validation to the theory of U-statistics (Hoeffding, 1948). This connection
permits use of cross-validation both to produce estimates of mean-squared error of prediction and to assess the variabil-
ity of these estimates of mean-squared error. In the section Cross-Validation Procedure Under Study, the cross-validation
approach under study is developed and illustrated with a few simple examples. In the section Use of U-Statistics, applica-
tion of U-statistics to cross-validation is introduced and illustrated. The section Conclusions includes concluding remarks.

Cross-Validation Procedure Under Study

In the problems under study, a simple random sample is used to construct a prediction of a real predicted random variable
Y0 with values in a set  by a predicting random vector X0 of finite dimension p≥ 1 with values in a set  . The procedures
under study are designed to estimate the accuracy of the prediction when neither X0 nor Y0 has been observed. The
methods considered make minimal assumptions concerning the joint distribution of X0 and Y0, and they are designed
to apply both to small samples and to large samples. Thus they do not rely on large-sample approximations. To develop
the desired analysis of cross-validation, consider mutually independent and identically distributed pairs (Xi, Yi), i≥ 0.
Because mean-squared error is emphasized in this report to simplify analysis, assume that Y0 has finite and positive
varianceσ2(Y0). Because illustrations often are related to linear regression, assume that X0 has a finite and positive-definite
covariance matrix Cov(X0). To avoid degenerate cases, assume that no constant p-dimensional vector β and real constant
α exists such that Y0 = α + β′X0 with probability 1. Here β′X0 =

∑p
j=1 βjXj0 if βj is element j of β and Xj0 is element j of

X0 for 1≤ j≤ p.
For sample sizes n at least as great as some minimum sample size n*, the desired prediction based on Xi, 0≤ i≤ n,

and Yi, 1≤ i≤ n, relies on a real function gn(T, u, t) defined for p by n matrices T with columns Ti in  for 1≤ i≤ n,
n-dimensional vectors u with elements ui in  for 1≤ i≤ n, and p-dimensional vectors t in  . The function gn is
assumed to satisfy the symmetry condition that for any permutation ω on the set n of positive integers no greater
than n, gn(Tω, uω, t)= gn(T, u, t), where Tω is the p× n matrix with column i equal to Tω(i) for 1≤ i≤ n and uω is the
n-dimensional vector with element i equal to uω(i) for 1≤ i≤ n. The function gn satisfies the basic regularity condition
that gn(U, V, W) is a random variable whenever U is a p× n random matrix with columns in  , V is an n-dimensional
random vector with elements in  , and V is a p-dimensional random vector in  . Let X̃n be the p× n matrix with
columns Xi, 1≤ i≤ n, and let Yn be the n-dimensional vector with elements Yi, 1≤ i≤ n. Then Ên0 = gn

(
X̃n,Yn,X0

)
predicts Y0. The error of prediction is then rn0 = Y0 − Ên0, and the mean-squared error is MSE

(
Y0, Ên0

)
= E

(
r2

n0
)

. The
symmetry assumption implies that the prediction that uses the sample (Xi, Yi) for 1≤ i≤ n is the same as the prediction
that uses the sample (Xω(i), Yω(i)) for 1≤ i≤ n. Thus the order of observation does not matter.
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The mean-squared error may be decomposed into components by observing that Y0 and Ên0 are conditionally inde-
pendent given X0 and E(Z| X0) and Z −E(Z| X0) are uncorrelated if the random variable Z has a finite variance (Blackwell,
1947). Here the random variable E(Z| X0) is the conditional expectation of Z given X0. It has expectation 0 and variance
σ2(Z| X0). It follows that

MSE
(

Y0, Ên0

)
=
[

E
(

Y0
)
− E

(
Ên0

)]2
+ σ2 (E

(
r0|X0

))
+ σ2

(
Ên0|X0

)
+ σ2 (Y0|X0

)
.

Thus MSE
(

Y0, Ên0

)
≥ σ2 (Y|X0

)
> 0. The mean-squared error MSE

(
Y0, Ên0

)
does not approach 0 no matter how

large the sample may be or how well Ên0 is chosen.
The problem treated with cross-validation is the estimation of MSE

(
Y0, Ên0

)
when the sample observations (Xi, Yi),

1≤ i≤ n, are observed but the predicting variable X0 and the predicted variable Y0 are not available. In some very ele-
mentary cases, this estimation can be accomplished without difficulty by use of Ênk = gn

(
X̃n,Yn,Xk

)
and rnk = Yk −

Ênk, 1 ≤ k ≤ n.

Example 1. Let n* = 2, and let gn (T, u, t) = n−1 ∑n
i=1 ui for n≥ n* so that, for 0 ≤ k ≤ n, Ênk is the sample mean Yn of

the Yi, 1≤ i≤ n. In this case, the vectors Xi, 0≤ i≤ n, are ignored. Let s2
n = (n − 1)−1 ∑n

i=1 r2
nk be the sample variance of

the Yi, 1≤ i≤ n. Then MSE
(

Y0, Ên0

)
=
(

1 + n−1) σ2 (Y0
)

has the unbiased estimate MSEn

(
Y0, Ên0

)
=
(

1 + n−1) s2
n. As

the sample size n increases, the strong law of large numbers implies that MSEn

(
Y0, Ên0

)
converges with probability 1 to

σ2(Y0).

Example 2. Consider prediction based on linear regression when the joint distribution of (X0, Y0) is multivariate normal.
Let n≥ n* = p+ 3. For p-dimensional vector b with elements bj for 1≤ j≤ p and a p-dimensional vector d with elements dj
for 1≤ j≤ p, let the inner product b ′ d of b and d be

∑p
i=1 bjdj. Let Sn−(T, u) be the minimum value of the sum of squares

Sn (c, d,T, u) =
n∑

i=1

(
ui − c − d′Ti

)2

for real c and p-dimensional vectors d. Let Mn(T, u) be the set of pairs (c, d) such that Sn(c, d, T, u)= Sn−(T, u). If no real
number c and p-dimensional vector d exist such that c+Ti

′ d= 0 for 1≤ i≤ n and some element of d is not 0, then Mn(T,
u) has only one element. Under the assumption of multivariate normality, the probability is 1 that Mn

(
X̃n,Yn

)
has only

one element. Nonetheless, for completeness, let ||d||2 = d ′ d, and let μn(T, u) be the minimum value of c2 + ||d||2 for (c,
d) in Mn(T, u). Then there is a unique real number an(T, u) and a unique p-dimensional vector bn(T, u) such that (an(T,
u), bn(T, u)) is in Mn(T, u) and [

an (T, u)
]2 + ‖‖bn (T, u)‖‖2 = μn (T, u)

(Rao & Mitra, 1972). Let gn(T, u, t)= an(T, u)+ [bn(T, u)] ′ t so that

Ênk = an

(
X̃n,Yn

)
+
[

bn

(
X̃n,Yn

)]′
Xk

for 0≤ k≤ n. Let s2
n =

(
n − p − 1

)−1 ∑n
k=1 r2

nk be the residual mean square error for the linear regression of Yi on Xi for
1≤ i≤ n so that E

(
s2

n
)
= σ2 (Y0|X0

)
. Results for the T2 statistic (Hotelling, 1931) and the standard result that a random

variable with an F distribution with p and n – p degrees of freedom has expectation (n− p)/(n− p− 2) lead to

MSE
(

Y0, Ên0

)
= σ2 (Y0|X0

)(
1 + 1

n
+

p
n − p − 2

)
.

It follows that
MSEn

(
Y0, Ên0

)
= s2

n

(
1 + 1

n
+

p
n − p − 2

)
is an unbiased estimate of the mean-squared error MSE

(
Y0, Ên0

)
. If n becomes large and p remains constant, then

MSE
(

Y0, Ên0

)
converges to σ2(Y0, X0) and MSEn

(
Y0, Ên0

)
converges to σ2(Y0, X0) with probability 1. Nonetheless,
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it is important to note that MSE
(

Y0, Ên0

)
∕σ2 (Y0|X0

)
is approximately n/(n− p) if p and n are both large. In this case,

if p / n is not close to 0, then a substantial fraction of the mean-squared error is due to statistical error associated with
estimation of the predictor rather than error inherent in prediction of Y from X.

Despite Examples 1 and 2, very few cases exist in which mean-squared error is readily estimated without either large-
sample approximations or strong restrictions on the joint distribution of the predictor X0 and the predicted variable Y0.
The following example for ridge regression can be helpful.

Example 3. Consider prediction based on ridge regression for n* = 1. For each integer n≥ 1, let λn be a positive real
number. Let Sn−(T, u) be the minimum value of the sum of squares

Sn (c, d,T, u) = λn ‖d‖2 +
n∑

i=1

(
ui − c − d′Ti

)2

over real c and p-dimensional vectors d. There is a unique real number an(T, u) and a unique p-dimensional vector bn(T,
u) such that

Sn
(

an (T, u) , bn (T, u) ,T, u
)
) = Sn− (T, u) .

As in Example 2, let gn(T, u, t)= an(T, u)+ [bn(T, u)] ′ t so that

Ênk = an

(
X̃n,Yn

)
+
[

bn

(
X̃n,Yn

)]′
Xk

for 0≤ k≤ n. In this case, no simple expression for MSE
(

Y0, Ên0

)
appears to be available even under multivariate

normality.
Cross-validation procedures seek to provide estimates of the mean-squared error MSE

(
Y0, Ên0

)
that avoid large-

sample approximations and restrictive assumptions.
In elementary cross-validation, the available observations (Xi, Yi), 1≤ i≤ n, are divided into two groups sometimes

termed a training sample (Xi, Yi), i in A, and an evaluation sample (Xi, Yi), i in B, where A and B are nonempty disjoint
subsets of the set n of positive integers no greater than n such that A and B have union n and A has m≥ n* elements. For an
integer k in B, the pairs (Xi, Yi), i in A, and Xk are used to provide a prediction of Yk. Let Π(m, A) be the set of one-to-one
functions from m onto A. For π in Π(m, A), let X̃π be the p×m matrix with columns Xπ(i) for 1≤ i≤m, and let Yπ be
the m-dimensional vector with elements Yν(i) for 1≤ i≤m. Then gm

(
X̃π,Yπ,Xk

)
has the same value Êmk (A) for all π in

Π(m, A), and Êmk (A) has the same distribution as Êm0. In addition, rmk (A) = Yk − Êmk (A) has the same distribution as
rm0. It follows that the mean-squared error MSE

(
Y0, Êm0

)
has the unbiased estimate [rnk(A)]2. If MSEn

(
Y0, Êm0;A

)
is

the average of [rmk(A)]2 over integers k in B, then MSEn

(
Y0, Êm0;A

)
is also an unbiased estimate of MSE

(
Y0, Êm0

)
.

Unfortunately, MSE
(

Y0, Ên0

)
is not normally the same as MSE

(
Y0, Êm0

)
. Consider the following examples.

Example 4. In Example 1, MSE
(

Y0, Êm0

)
= σ2 (Y0

) (
1 + m−1) is larger than MSE

(
Y0, Ên0

)
. Nonetheless, if m is large,

then MSE
(

Y0, Êm0

)
− MSE

(
Y0, Ên0

)
is small.

Example 5. In Example 2,

MSE
(

Y0, Êm0

)
= σ2 (Y0|X0

)(
1 + 1

m
+

p
m − p − 2

)
> MSE

(
Y0, Ên0

)
.

For fixed p, if m is large, MSE
(

Y0, Êm0

)
− MSE

(
Y0, Ên0

)
is small; however, it should be noted that[

MSE
(

Y0, Êm0

)
− MSE

(
Y0, Ên0

)]
∕σ2 (Y0|X0

)
can be made arbitrarily large by letting m− p− 2 not increase while

letting p increase.
A practical complication generally encountered in the choice of m and n is the typical trade-off between a decreas-

ing value of MSE
(

Y0, Êm0

)
and an increasing variance of MSEn

(
Y0, Êm0;A

)
as m approaches n. Assume that Y0 and

Êm0 have finite fourth moments, so that r2
m0 has a finite variance. The variance of r2

mk (A) is σ2 (r2
m0
)

for k in B, and the

ETS Research Report No. RR-19-27. © 2019 Educational Testing Service 3
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covariance of r2
mk (A) and r2

mk′ (A) is the variance σ2(E
(

r2
m0|X̃m,Ym

)
of the conditional expectation E

(
r2

m0|X̃m,Ym

)
of

r2
m0 given (Xi, Yi), 1≤ i≤m. In addition,

σ2 (r2
m0
)
= σ2

(
E
(

r2
m0|X̃m,Ym

))
+ σ2

(
r2

m0|X̃m,Ym

)
),

where σ2
(

r2
m0|X̃m

)
is the variance of r2

m0 − E
(

r2
m0|X̃m,Ym

)
(Blackwell, 1947). It follows that

σ2
(

MSEn

(
Y0, Êm0;A

))
= (n − m)−1

[
σ2 (r2

m0
)
+ (n − m − 1) σ2

(
E
(

r2
m0|X̃m,Ym

))]
= (n − m)−1 σ2

(
r2

m0|X̃m,Ym

)
+ σ2

(
E
(

r2
m0|X̃m,Ym

))
.

For a given m, the variance σ2
(

MSEn

(
Y0, Êm0;A

))
decreases to σ2

(
E
(

r2
m0|X̃m,Ym

))
as n increases.

Example 6. Consider Example 1 for Y with a finite fourth moment. Here rmk (A) = Yk − Êmk (A), where Êmk (A) is the
sample mean of Yi for i in A. Let κ4(Y0) be the fourth cumulant of Y0. Let σ4(Y0) be [σ2(Y0)]2. Let

Dm0 = Êm0 − E (Y) = m−1
m∑

i=1

[
Yi − E (Y)

]
.

The conditional expectation of r2
m0 given (Xi, Yi), 1≤ i≤m, is σ2 (Y0

)
+ D2

m0 so that

σ2
(

E
(

r2
m0|X̃m,Ym

))
= σ2 (D2

m0
)
=

2σ4 (Y0
)

m
+

κ4
(

Y0
)

m3

(Fisher, 1930). The difference r2
m0 − E

(
r2

m0|X̃m,Ym

)
is [Y0 −E(Y0)]2 −σ2(Y0) so that σ2

(
r2

m0|X̃m,Ym

)
= 2σ4 (Y0

)
+

κ4
(

Y0
)

. It follows that

σ2
(

MSEn

(
Y0, Êm0;A

))
= 2 n

m (n − m)
σ4 (Y) + m3 + n − m

(n − m)m3 κ4 (Y) .

This variance only approaches 0 if both n – m and m approach ∞. If Y has a normal distribution, then κ4(Y)= 0, so
that

σ2
(

MSEn

(
Y0, Êm0;A

))
= 2 n

m (n − m)
σ4 (Y) .

With or without normality, if n goes to∞ and m / n approaches a positive constant f < 1, then σ2
(

MSEn

(
Y0, Êm0;A

))
approaches

2σ4 (Y)
f
(

1 − f
) +

κ4 (Y)
1 − f

.

In the normal case, the limit is smallest if f = 1/2.

Example 7. In Example 2, an argument similar to that in Example 6 together with use of the variance formula for the F
distribution shows that for m− p> 4,

σ2
(

MSEn

(
Y0, Êm0;A

))
= 2 n

m (n − m)

[
1 +

(m − 2) p(
m − p − 2

)2 (m − p − 4
)
]
σ4 (Y0|X0

)
,

where σ4(Y0| X0) is the square of σ2(Y0| X0). For fixed dimension p, if n approaches ∞ and m / n approaches a posi-
tive f < 1, then nσ2

(
MSEn

(
Y0, Êm0;A

))
approaches 2σ4(Y0| X0)/[f (1− f )]. Nonetheless, σ2

(
MSEn

(
Y0, Êm0;A

))
∕σ4(

Y0|X0
)

becomes arbitrarily large if m / n approaches f < 1, n approaches ∞, and m – p remains bounded.
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Use of U-Statistics

Greater efficiency in estimation of MSE
(

Y0, Êm0

)
can be achieved by use of U-statistics (Hoeffding, 1948). These statistics

provide a general approach to construction of unbiased estimates, determination of their variances, and estimation of their
variances. For some integer C ≥ 1, let the real function h(T, u) be defined for p×C matrices T with columns in  and
C-dimensional vectors u with elements in  . Assume that h(W, Z) is a random variable whenever W is a p×C random
matrix with columns in  and Z is a C-dimensional random variable with elements in  . For n≥C, let the U-statistic
Un defined by h be the average of h

(
X̃π,Yπ

)
over functions π in Π

(
C, n

)
from C to n. Alternatively, let  (C, n) be the

class of subsets A of n with C elements, and let UA, A in  (C, n) be the average of h
(

X̃π,Yπ

)
over functions π in Π(C,

A). Then Un is the average of UA for A in  (C, n). Assume that h
(

X̃C,YC

)
has a finite expectation. For A in  (C, n), Un

and UA have the finite expectation E
(

Un
)
= E

(
UA

)
= E

(
UC

)
= E

(
h
(

X̃C,YC

))
. If h

(
Z̃m

)
has a finite variance, then

Un has the finite variance

σ2 (Un
)
=
(

n
C

)−1 C∑
c=1

(
C
c

)(
n − C
m − C

)
σ2

(
UC|X̃C−c,YC−c

)
.

Here, for nonnegative integers j and k, (
k
j

)
=

{ k!
j!(k−j)! , j ≤ k,

0, j > k.

For c<C, σ2
(

UC|X̃C−c,YC−c

)
is the conditional variance of UC given (Xi, Yi) for 1≤ i≤C − c. For c=C,

σ2
(

UC|X̃C−c,YC−c

)
is the variance σ2(UC). The σ2

(
UC|X̃C−c,YC−c

)
are nondecreasing in c, and the variance σ2(Un)

satisfies the inequality
C2

n
σ2

(
UC|X̃1,Y1

)
≤ σ2 (Un

)
≤

m
n
σ2 (UC

)
.

The variance σ2(Un) is nonincreasing in n. If 2C ≤ n, then σ2(Un) has the unbiased estimate

s2 (Un
)
= U2

n − V
(

Un
)
,

where V(Un) is the average of UAUB over all pairs of disjoint sets A and B in  (C, n).
One basic use of U-statistics in cross-validation involves use of multiple training sets. Consider the average Un =

MSEn

(
Y0, Êm0

)
of
[
r2

mk (A)
]2 over pairs (A, k) such that A is in  (m, n), k is in n, and k is not in A. Here MSEn

(
Y0, Êm0

)
is the average of MSEn

(
Y0, Êm0;A

)
for A in  (m, n). If m= n− 1, then Um+1 = MSEn

(
Y0, Êm0

)
is the estimate of

MSE
(

Y0, Êm0

)
provided by n-fold cross-validation (Geisser, 1975; Stone, 1974). This case is relatively simple in terms

of computation because MSEn

(
Y0, Êm0

)
is the average of r2

A(k,n)k for 1≤ k≤ n and A(k, n) is the set consisting of all
positive integers no greater than n that do not equal k. If r2

m0 has finite variance and m= n− 1, then

σ2
(

MSEn

(
Y0, Êm0

))
= n−1

[
σ2 (r2

m0
)
+ (n − 1)Cov

(
r2

A(1,n)1, r2
A(2)2

)]
.

The general formula for σ2 (Un
)
= σ2

(
MSEn

(
Y0, Êm0

))
for n− 1>m applies with C =m+ 1. This case is usually

much more difficult, although occasional exceptions do exist.

Example 8. In Example 6, Um+ 1 is the average
(

1 + m−1) s2
m+1 of{

Yk − m−1
[
(m + 1)Ym+1 − Yk

]}2
=
(m + 1

m

)2 (
Yk − Ym+1

)2

over positive integers k≤m+ 1. It follows that MSEn

(
Y0, Êm0

)
=
(

1 + m−1) s2
n (Hoeffding, 1948). If n≥ 3, then

σ2
(

MSEn

(
Y0, Êm0

))
=
(m + 1

m

)2
[

2σ4 (Y)
n − 1

+
κ4 (Y)

n

]
ETS Research Report No. RR-19-27. © 2019 Educational Testing Service 5
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(Fisher, 1930).

Example 9. In Example 2, the case of m= n− 1 leads to the PRESS statistic for the regression of Yi on Xi for 1≤ i≤ n in
B (Draper & Smith, 1981, p. 325). In this case, computations are unusually easy (Cook & Weisberg, 1982, p. 33) as long
as for no positive integer k≤ n does there exist a real number c and p-dimensional vector d with some nonzero element
such that c+Ti

′ d= 0 for 1≤ i≤ n and i≠ k. This condition holds with probability 1. Let Xn be the sample mean of the
Xi for 1≤ i≤ n, and let Covn (X) be the sample covariance matrix of Xi, 1≤ i≤ n. Let the leverage measure

hni =
1
n
+ 1

n − 1

(
Xi − Xn

)′ [
Covn (X)

]−1 (
Xi − Xn

)
< 1.

Then

MSEn

(
Y0, Êm0

)
= n−1

n∑
i=1

[
rni∕

(
1 − hni

)]2

is the PRESS estimate of the mean-squared error MSE
(

Y0, Êm0

)
.

The preceding examples involve a common but not universal phenomenon. In numerous statistical problems, removal
of one observation is quite straightforward. Nonetheless, one difficulty that arises in general is that the variance of
MSEn

(
Y0, Êm0

)
does not have an unbiased estimate if m= n− 1.

A second use of U-statistics in cross-validation involves construction of a new estimation function gnm equal to the
average of gm(Tπ, uπ, t) for π inΠ

(
m, n

)
for the p× n matrix T with columns Ti in for 1≤ i≤ n, the n-dimensional vector

u with elements ui in for 1≤ i≤ n, and the p-dimensional vector t in . Here Tπ is the p×m matrix with columns Tπ(i) for
1≤ i≤m, and uπ is the m-dimensional vector with elements uπ(i) for 1≤ i≤m. The estimate Enmk is then gnm

(
X̃n,Yn,Xk

)
for k≥ 0, and rnmk = Yk − Enmk. The estimate Enmk is also the average of Êmk (A) for A in (m, n), while rnmk is the average
of rmk(A) for A in  (m, n).

The mean-squared error

MSE
(

Y0,Enm0

)
=
(

n
m

)−1 m∑
c=0

(
m
c

)(
n − m
m − c

)
E
([

E
(

rm0|X̃0c,Y0c

)]2
)

≤ MSE
(

Y0, Ên0

)
,

where X̃0c is the p× (c+ 1) matrix with columns Xi, 0≤ i≤ c and Y0c is the (c+ 1)-dimensional vector with elements Yi,
0≤ i≤ c. Thus E

(
rm0|X̃0c,Y0c

)
is the conditional expectation of rm0 given (Xi, Yi), 0≤ i≤ c. The mean-squared error for

prediction of Y0 by Enm0 is only equal to the mean-squared error for prediction of Y0 by Êm0 in the trivial case in which
Êm0 is constant with probability 1.

If 2m+ 1≤ n, then MSE
(

Y0,Enm0

)
has the unbiased estimate MSEn

(
Y0,Enm0

)
equal to the average of rmk(A)rmk(B)/

N(n, A, B) for sets A and B in  (m, n) and positive integers k≤ n in neither A nor B, where N(n, A, B) is the number of
positive integers no greater than n that are in neither A nor B. The variance of MSEn

(
Y0,Enm0

)
can be computed if Y0

and Êm0 have finite fourth moments, but the formula is somewhat complex in general cases. Unbiased estimation of the
variance requires that 4(m+ 1) not exceed n, and computations are far from straightforward.

If m+ 1= n, then Enm0 is associated to some extent with the simplest case of jackknifing (Miller, 1964; Quenouille,
1956). In this case, Enm0 is the average of Êm0 (A) for the n sets A in  (m, n). In general, Enm0 is associated with
delete-(n−m) jackknifing. Applications of jackknifing depend on large-sample conditions related to the condition that
nMSE

(
Ên0,Enm0

)
approaches 0 (Shao & Wu, 1989). Nonetheless, it should be emphasized that traditional uses of

jackknifing involve evaluation of parameter estimates rather than accuracy of prediction.

Example 10. In Example 1, for any choice of the positive integer m< n, Enm0 = Ên0, so that MSE
(

Y0,Enm0

)
=(

1 + n−1) σ2 (Y0
)

and MSEn

(
Y0,Enm0

)
=
(

1 + n−1) s2
n. Thus Enm0 recovers the original prediction Ên0. In this example,

the variance of MSEn

(
Y0,Enm0

)
can be obtained from Example 8.

Example 11. In Example 9, m= n− 1 and Êm0 − Ên0 is

−
rnn

1 − hnn

[
1
n
+ 1

n − 1

(
X0 − Xn

)′ [
Covn (X)

]−1 (
Xn − Xn

)]
.
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For fixed dimension p, the difference is of order 1/n. Because
n∑

i=1
rni = 0 and

n∑
i=1

rniXi equals the vector 0p with all

elements 0, Enm0 − Ên0 is the average of

rnihni

1 − hni

[
1
n
+ 1

n − 1

(
X0 − Xn

)′ [
Covn (X)

]−1 (
Xi − Xn

)]
for 1≤ i≤ n (Cook, 1977). For fixed p, this difference is of order n−2. Results are much more complex and less satisfactory
if p increases as the sample size n increases.

Incomplete U-Statistics

Because the number of sets in  (m, n) can be extremely large for m neither near n nor near 1, computations in many
cases can be sufficiently tedious that sampling is needed. This problem can be especially severe if computation of rmk(A) is
difficult for even one set A in  (m, n). One remedy involves selection of a sample  of distinct sets in  (m, n). The sam-
ple is not necessarily random. In this discussion, inferences are conditional on the sample selected. The mean-squared
error MSE

(
Y0, Êm0

)
is estimated by the average MSEn

(
Y0, Êm0;

)
of MSEn

(
Y0, Êm0;A

)
for A in  (Blom, 1976).

If  =  (m, n), then MSEn

(
Y0, Êm0;

)
is MSE

(
Y0, Êm0;

)
. If  has a single element A, then MSEn

(
Y0, Êm0;

)
is MSEn

(
Y0, Êm0;A

)
. In all cases, MSEn

(
Y0, Êm0;

)
is an unbiased estimate of MSE

(
Y0, Êm0

)
. Determination of

σ2
(

MSEn

(
Y0, Êm0;

))
requires that Y0 and Êm0 have finite fourth moments. Unbiased estimation of this variance

requires that 2(m+ 1) not exceed n. This estimation can entail substantial computational labor.
A good illustration of incomplete U-statistics involves a generalization of K-fold replication (Geisser, 1975; Stone,

1974). Let T be the smallest positive integer such that Tm / n is a positive integer. For positive integers i and j such
that j> 1, let mod (i, j) be the smallest nonnegative integers such that i−mod (i, j) is an integer multiple of j. For
example, mod (10, 7)= 3. Let  consist of the T sets Bt , 1≤ t ≤T of integers mod ((t − 1)m+ i, n) such that 1≤ i≤m. The
case of m+ 1= n leads to n-fold cross-validation with T = n and  =  (n − 1, n). In traditional K-fold replication, T =K
and n(K − 1)=mK. Estimation of the variance of MSEn

(
Y0, Êm0;

)
is not possible for traditional K-fold replication.

On the other hand, this estimation is quite possible if n is a multiple of 5, m= 2n/5, and T = 5.
A second application of incomplete U-statistics involves the average Emk () of Êmk (A) over A in  for a nonneg-

ative integer k. Let N() be the number of sets in . The mean-squared error MSE
(

Y0,Em0 ()
)

is the average of
E(rm0(A)rm0(B)]] for ordered pairs (A, B) such that A and B are in . If A and B have an intersection with c members,
then

E
(

rm0 (A) rm0 (B)
)
= E

[
E
(

rm0|X̃0c,Y0c

)]2
.

If 2m+ 1≤ n, then MSE
(

Y0,Em0 ()
)

has the unbiased estimate MSEn

(
Y0,Em0 (B)

)
equal to the average of

rmk(A)rmk(B)/N(n, A, B) for sets A and B in  and positive integers k≤ n in neither A nor B, where N(n, A, B) is the
number of positive integers no greater than n that are in neither A nor B. The variance of MSEn

(
Y0,Enm0

)
and its

associated estimate are usually difficult to compute even if Y0 and Êm0 have finite fourth moments.

Example 12. In Example 1, as long as each i from 1 to n appears in the same number of sets in , Enmk is the sample
mean Yn of Yi, 1≤ i≤ n. This result applies in K-fold replication.

Conclusions

A basic challenge in cross-validation is verification that results are reproducible. In the sense that the variance of estimated
mean square error can itself be estimated, the answer is affirmative with caveats. In general, the estimation procedure based
on m observations needs to employ less than half the total sample of size n, and the estimation procedure examined must
be obtained with multiple choices of m observations from the sample of size n. Multiple selections of m observations can
be applied to produce an improved estimation procedure based on all n observations, but evaluation of the variance of
mean-squared error for the improved estimation procedure is often not feasible.
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Consideration of cross-validation requires some perspective. In most routine statistical problems that involve large
samples, cross-validation involves rather small corrections. For example, a crude but biased estimate of MSE

(
Y0, Ên0

)
is the average MSEan

(
Y0, Ên0

)
of r2

nk over positive integers k≤ n. The bias arises because Ên0 depends on Yk and Xk for

1≤ k≤ n. The difference between MSE
(

Y0, Ên0

)
and the expectation E

(
MSEan

(
Y0, Ên0

))
is often of order n−1, and the

standard deviation σ
(

MSEn

(
Y0, Ên0

))
of MSEn(Y0, Ên0 is often of order 1/n1/2, so the bias is relatively small.

Examples 1 and 2 illustrate the issue. For the sample mean of Example 1, MSEan

(
Y0, Ên0

)
=
(

1 − n−1) s2
n has expecta-

tion (1− n−1)σ2(Y0), whereas MSE
(

Y0, Ên0

)
is (1+ n−1)σ2(Y0). If Y0 has a finite fourth moment, then MSEn

(
Y0, Ên0

)
has the standard deviation (1+ n−1)[2σ4(Y0)/(n− 1)+κ4(Y)/n]1/2. In Example 2, MSEan

(
Y0, Ên0

)
=
[
1 −

(
p + 1

)
∕n

]
s2

n
has expectation [1− (p+ 1)/n]σ2(Y0| X0), whereas

MSE
(

Y0, Ên0

)
= σ2 (Y0|X0

)(
1 + 1

n
+

p
n − p − 2

)
.

For fixed p, the bias is of order n−1, and n1∕2σ(
(

MSEn

(
Y0, Ên0

))
converges to 21/2σ2(Y0| X0). In this example, the

situation does change if p / n is far from 0. Similar issues arise in variance estimation. A crude but biased estimate of
σ2

(
MSEn

(
Y0, Ên0

))
is n−1 times the sample variance of the r2

ni for 1≤ i≤ n. The bias is of order n−2 in typical cases.
A further matter in terms of perspective is that much simpler statistical methods exist for approximation of bias in

estimated mean-squared error (Mallows, 1973). These methods apply to Examples 1 and 2. Given that cross-validation
involves significant effort and can have some costs in terms of efficiency of estimation, it is important to consider when
cross-validation should be used at all. In the end, it appears that applications of cross-validation are most appropriate in
samples that are not very large and in cases in which estimates are not well-behaved differentiable functions of the original
data. Relevant cases include use of stepwise regression and other methods of model selection, use of inequality constraints,
and cases in which the dimension p of X is large relative to the sample size n. In numerous routine statistical problems,
cross-validation has limited value.
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